Стартовая Предметный указатель Новости науки и техники
Новости науки и техники
История робототехники
Чего ждать от завтрашнего дня?
Главное предназначение робота - заменить человека в тех местах, где требуется высокая физическая устойчивость и точность. Кроме этого, такие устройства довольно часто применяются во время различных испытаний. Беспилотные самолеты-разведчики, саперные тралы, а также известные советские луноходы – все это, они - роботы. Далее...

робототехника

силовое поле

СИЛОВОЕ ПОЛЕ - часть пространства (ограниченная или неограниченная), в каждой точке к-рой на помещённую туда материальную частицу действует определённая по численной величине и направлению сила, зависящая только от координат х, у, z этой точки. Такое С. п. наз. стационарным; если сила поля зависит и от времени, то С. п. наз. нестационарным; если сила во всех точках С. п. имеет одно и то же значение, т. е. не зависит ни от координат, ни от времени, С. п. наз. однородным.

Стационарное С. п. может быть задано ур-ниями
8032-24.jpg

где Fx, Fy, Fz - проекции силы поля F.

Если существует такая ф-ция U(x, у, z), называемая силовой ф-цией, что элементарная работа сил поля равна полному дифференциалу этой ф-ции, то С. п. наз. потенциальным. В этом случае С. п. задаётся одной ф-цией U(x, у, z), а сила F может быть определена через эту ф-цию равенствами:
8032-25.jpg

или8032-26.jpg . Условие существования силовой ф-ции для данного С. п. состоит в том, что
8032-27.jpg

или8032-28.jpg . При перемещении в потенциальном С. п. из точки M1(x1, y1, z1)в точку М2 2, у2, z2) работа сил поля определяется равенством8032-29.jpg и не зависит от вида траектории, по к-рои перемещается точка приложения силы.

Поверхности U(x, у, z) = const, на к-рых ф-ция сохраняет пост. значение, наз. поверхностями уровня. Сила в каждой точке поля направлена по нормали к проходящей через эту точку поверхности уровня; при перемещении вдоль поверхности уровня работа сил поля равна нулю.

Примеры потенциального С. п.: однородное поле тяжести, для к-рого U = -mgz, где т - масса движущейся в поле частицы, g - ускорение силы тяжести (ось z направлена вертикально вверх); ньютоново поле тяготения, для к-рого U = km/r, где r =8032-30.jpg - расстояние от центра притяжения, k - постоянный для данного поля коэффициент. Вместо силовой ф-ции в качестве характеристики потенциального С. п. можно ввести потенциальную энергию П, связанную с U зависимостью П(х, у, z)= = -U(x, у, z). Изучение движения частицы в потенциальном С. п. (при отсутствии других сил) существенно упрощается, т. к. в этом случае имеет место закон сохранения механич. энергии, позволяющий установить прямую зависимость между скоростью частицы и её положением в С. п. с. м. Тарг. СИЛОВЫЕ ЛИНИИ - семейство кривых, характеризующих пространственное распределение векторного поля сил; направление вектора поля в каждой точке совпадает с касательной к С. л. Т. о., ур-ния С. л. произвольного векторного поля А (х, у, z) записываются в виде:
8032-31.jpg

Плотность С. л. характеризует интенсивность (величину) силового поля. Область пространства, ограниченная С. л., пересекающими к--л. замкнутую кривую, наз. силовой трубкой. С. л. вихревого поля замкнуты. С. л. потенциального поля начинаются на источниках поля и заканчиваются на его стоках (источниках отрицат. знака).

Понятие С. л. введено М. Фарадеем при исследовании магнетизма, а затем получило дальнейшее развитие в работах Дж. К. Максвелла по электромагнетизму. Согласно представлениям Фарадея и Максвелла, в пространстве, пронизываемом С. л. электрич. и магн. полей, существуют механич. напряжения, соответствующие натяжению вдоль С. л. и давлению поперёк них. Математически эта концепция выражена в Максвелла тензоре натяжений эл--магн. поля.

Наряду с использованием понятия С. л. чаще говорят просто о линиях поля: напряжённости электрич. поля Е, индукции магн. поля В и т. п., не делая спец. акцента на отношение этих нолей к силам.

  Предметный указатель