Стартовая Предметный указатель Новости науки и техники
Новости науки и техники
Если бы можно было не дышать
Человек в среднем вдыхает 15 м3 воздуха в сутки. Для нормальной жизнедеятельности необходим воздух без вредных примесей. Так, например, по данным Всемирной организации здравоохранения , содержащиеся в воздухе микрочастицы обуславливают почти 9% смертей от рака легких, 5% смертей от сердечно-сосудистой патологии и являются причиной около 1% летальных случаев от инфекционных заболеваний дыхательных путей. Далее...

микробиология и химия воздуха

молекулярная акустика

МОЛЕКУЛЯРНАЯ АКУСТИКА - раздел физ. акустики, в к-ром структура и свойства вещества и кинетика молекулярных процессов исследуются акустич. методами. Осн. методы M. а.- измерения скорости звука и коэф. поглощения звука в зависимости от разл. физ. параметров: частоты звуковой волны, темп-ры, давления, магн. поля и др. величин. Исследования, проводимые такими методами, иногда объединяют в особый раздел эксперим. акустики - ультразвуковую или акустическую спектроскопию. Методами M. а. можно исследовать газы, жидкости, полимеры, твёрдые тела, плазму. На ранней стадии развития этой области и в нек-рых случаях до сих пор термин "М. а." применяют лишь к исследованиям молекулярной структуры газов и жидкостей.

M. а. как самостоят. раздел акустики возникла в 30-х гг. 20 в., когда было выяснено, что процессы коле-бат. релаксации (см. Релаксация акустическая)в газах вносят существенный вклад в поглощение звука и приводят к появлению дисперсии звука. В дальнейшем было выяснено, что эти процессы играют важную роль при распространении звука не только в газах, но и в жидкостях и в др. веществах. Изучение релаксац. процессов в звуковой волне позволило связать нек-рые свойства вещества на молекулярном уровне, а также кинетич. характеристики молекулярных процессов с такими макроскопич. величинами, как скорость и коэф. поглощения звука.

Скорость звука с определяется структурой среды и взаимодействием между молекулами, поэтому измерения её величины дают сведения о равновесной структуре жидкостей и газов. По скорости звука можно определить адиабатич. сжимаемость вещества, отношение темплоёмкостей, модули упругости твёрдого тела и др. Данные измерения скорости звука позволяют судить о составе газовых и жидких смесей, в т. ч. и растворов. Данные по поглощению звука позволяют определять коэф. сдвиговой и объёмной вязкости, времена релаксации и др. параметры.

В газах по зависимости скорости звука от темп-ры определяют параметры, характеризующие взаимодействие молекул при столкновениях. В жидкостях, вычисляя скорость звука на основании той или иной модели жидкости и сравнивая результаты расчёта с экспериментом, в ряде случаев можно оценить правдоподобность используемой модели и определить энергию взаимодействия между молекулами.

При наличии релаксац. процессов энергия поступат. движения молекул в звуковой волне перераспределяется на внутр. степени свободы, при этом появляется дисперсия скорости звука, а зависимость коэф. поглощения от частоты отклоняется от классич. квадратичного закона: коэф. поглощения звука на длину волны имеет максимум на нек-рой частоте wp = 1/т, наз.

частотой релаксации. Величина дисперсии скорости звука и значение коэф. поглощения на частоте wp зависят от того, какие именно степени свободы возбуждаются под действием звука, а время релаксации т связано со скоростью обмена энергией между разл. степенями свободы. Измеряя скорость и поглощение звука в зависимости от частоты, можно судить о характере молекулярных процессов и о том, какой из этих процессов вносит осн. вклад в релаксацию. Методы M. а. позволяют исследовать возбуждение колебат. и вращат. степеней свободы в газах и жидкостях, характер столкновений молекул в смесях разл. газов, процесс установления равновесия при хим. реакциях, структурную релаксацию в жидкостях, процессы сдвиговой релаксации в очень вязких жидкостях и полимерах, разл. процессы взаимодействия звука с электронами проводимости, магнонами, фононами и др. элементарными возбуждениями в твёрдых телах (см. Спин-фононное взаимодействие, Акустоэлектронное взаимодействие). Методы M. а. могут использоваться также для исследования кинетики молекулярных процессов в растворах и смесях, в критич. области при фазовых переходах, в расслаивающихся полимерных системах. Эти методы позволяют исследовать свойства стёкол в твёрдом и жидком состоянии, включая область стеклования. В жидкости с пузырьками газа по характеру зависимостей скорости и поглощения от частоты можно определить размеры пузырьков и концентрацию газовой фазы, в биополимерах - характер межмолекулярных взаимодействий и перестройку молекул биополимеров в растворе.

Область релаксации для жидкостей лежит, как правило, в диапазоне более высоких частот, чем для газов. В очень вязких жидкостях, полимерах и нек-рых др. веществах в поглощение и дисперсию может давать вклад целый набор релаксац. процессов с широким спектром времён релаксации. Изучение влияния темп-ры и давления на частотные зависимости скорости и поглощения звука позволяет разделить вклад разл. релаксац. процессов.

В M. а. для исследований обычно применяется УЗ- и гиперзвуковые волны: в газах - в диапазоне частот 104-105 Гц, а в жидкостях и твёрдых телах - в диапазоне 105 -1010 Гц. Использование оптич. методов, а именно: измерение смещения и ширины компонент Мандельштама - Бриллюэна рассеяния и определение по ним скорости и коэф. поглощения звука, позволило расширить диапазон применяемых частот вплоть до десятков ГГц.

Методы M. а. могут использоваться также для исследования веществ, в к-рых взаимодействие звука с элементарными возбуждениями не ограничивается простейшими релаксац. процессами. Напр., исследование поглощения звука в металлах и полупроводниках при разл. темп-pax, магн. полях и др. воздействующих факторах позволяет получить информацию о поведении электронов, о структуре ферма-поверхностей и об особенностях электрон-фононного взаимодействия. Измерение затухания звука в диэлектриках, напр. в кварце, в зависимости от темп-ры и при разных условиях предварит. обработки позволяет судить о наличии тех или иных примесей или дефектов.

Лит.: Михайлов И. Г., Соловьёв В. А., Сыр-ников Ю. П., Основы молекулярной акустики, M., 1964; Физическая акустика, под ред. У. Мэзона, пер. с англ., т. 2, ч. A, M., 1968; т. 4, ч. А -Б, M., 1969-70; т. 5, 7, M., 1973-74; Такер Д ж., Рэмптон В., Гиперзвук в физике твердого тела, пер. с англ., M., 1975; Красильников В. А., Крылов В. В., Введение в физическую акустику, M., 1984.

A. Л. Полякова.

  Предметный указатель