Стартовая Предметный указатель Новости науки и техники
Новости науки и техники
Процессоры INTEL — история успеха
А начиналось все в далеком 1971 году, когда малоизвестная компания "Intel Corporation" получила от одной из японских корпораций заказ на разработку и изготовление набора логических микросхем для настольного калькулятора. Вместо этого, по инициативе инженеров "Intel", на свет появился первый четырехбитный микропроцессор 4004 Далее...

Intel corp.

микроволновое фоновое излучение

МИКРОВОЛНОВОЕ ФОНОВОЕ ИЗЛУЧЕНИЕ (реликтовое излучение) - космич. излучение, имеющее спектр, характерный для абсолютно чёрного тела при темп-ре ок. 3 К; определяет интенсивность фонового излучения Вселенной в диапазоне сантиметровых, миллиметровых и субмиллиметровых радиоволн. Характеризуется высочайшей степенью изотропии (интенсивность практически одинакова во всех направлениях). Открытие M. ф. и. [А. Пензиас (A. Penzias), P. Вильсон (R. Wilson), 1965] подтвердило т. н. горячей Вселенной теорию, дало важнейшее эксперим. свидетельство в пользу представлений об изотропии расширения Вселенной и её однородности в больших масштабах (см. Космология).

Согласно теории горячей Вселенной, вещество расширяющейся Вселенной имело в прошлом намного более высокую плотность, чем ныне и чрезвычайно высокую темп-ру. При T > 108 К первичная плазма, состоявшая из протонов, ионов гелия и электронов, непрерывно излучающих, рассеивающих и поглощающих фотоны, находилась в полном термодинамич. равновесии с излучением. В ходе последующего расширения Вселенной темп-pa плазмы и излучения падала. Взаимодействие частиц с фотонами уже не успевало за характерное время расширения заметно влиять на спектр излучения (оптическая толщина Вселенной по тормозному излучению к этому времени стала много меньше единицы). Однако даже при полном отсутствии взаимодействия излучения с веществом в ходе расширения Вселенной чернотельный спектр излучения остаётся чернотельным, уменьшается лишь его темп-pa. Пока темп-pa превышала 4000 К, первичное вещество было полностью ионизовано, пробег фотонов от одного акта рассеяния до другого был много меньше горизонта событий во Вселенной. При T < 4000 К произошла рекомбинация протонов и электронов, плазма превратилась в смесь нейтральных атомов водорода и гелия. Вселенная стала полностью прозрачной для излучения. В ходе её дальнейшего расширения темп-pa излучения продолжала падать, но чернотельный характер излучения сохранился как реликт или "память" о раннем периоде эволюции мира. Это излучение было обнаружено сначала на волне 7,35 см, а затем и на др. волнах (от 0,6 мм до 50 см).

Темп-pa M. ф. и. с точностью до 10% оказалась равной 2,7 К. Cp. энергия фотонов этого излучения крайне мала - в 3000 раз меньше энергии фотонов видимого света, но число фотонов M. ф. и. очень велико. На каждый атом во Вселенной чриходится ~ 109 фотонов M. ф. и. (в ср. 400-500 фотонов/см3).

Наряду с прямым методом определения темп-ры M. ф. и.- по кривой распределения энергии в спектре излучения (см. Планка закон излучения)- существует также косвенный метод - по населённости ниж. уровней энергии молекул в межзвёздной среде. При поглощении фотона M. ф. и. молекула переходит из осн. состояния в возбуждённое. Чем выше темп-pa излучения, тем выше плотность фотонов с энергией, достаточной для возбуждения молекул, и тем большая их доля находится на возбуждённом уровне. По кол-ву возбуждённых молекул (населённости уровней) можно судить о темп-ре возбуждающего излучения. Так, наблюдения оптич. линий поглощения межзвёздного циана (CN) показывают, что его ниж. уровни энергии населены так, как будто молекулы CN находятся в поле трехградусного чернотельного излучения. Этот факт был установлен (но не понят в полной мере) ещё в 1941, задолго до обнаружения M. ф. и. прямыми наблюдениями.

Ни звёзды и радиогалактики, ни горячий межгалак-тич. газ, ни переизлучение видимого света межзвёздной пылью не могут дать излучения, приближающегося по свойствам к M. ф. и.; суммарная энергия этого излучения слишком велика, и спектр его не похож ни на спектр звёзд, ни на спектр радиоисточников (рис. 1). Этим, а также практически полным отсутствием флуктуации интенсивности по небесной сфере (мелкомасштабных угл. флуктуации) доказывается космологич. реликтовое происхождение M. ф. и.


Рис. 1. Спектр микроволнового фонового излучения Вселенной [интенсивность в эрг/(см2*с*ср*Гц)]. Эксперим. точки нанесены с указанием погрешностей измерений. Точки CN, CH соответствуют результатам определения верхней границы (показана стрелкой) температуры излучения по населённости уровней соответствующих межзвёздных молекул.


3026-87.jpg


Флуктуации M. ф. и. Обнаружение небольших различий в интенсивности M. ф. и., принимаемого от разных участков небесной сферы, позволило бы сделать ряд выводов о характере первичных возмущений в веществе, приведших в дальнейшем к образованию галактик и скоплений галактик. Совр. галактики и их скопления образовались в результате роста незначительных по амплитуде неоднородностей плотности вещества, существовавших до рекомбинации водорода во Вселенной (см. Первичные флуктуации во Вселенной). Для любой космологич. модели можно найти закон роста амплитуды неоднородностей в ходе расширения Вселенной. Если знать, каковы были амплитуды неоднородности вещества в момент рекомбинации, можно установить, за какое время они могли вырасти и стать порядка единицы. После этого области с плотностью, значительно превышающей среднюю, должны были выделиться из общего расширяющегося фона и дать начало галактикам и их скоплениям (см. Крупномасштабная структура Вселенной )."Рассказать" об амплитуде начальных неоднородностей плотности в момент рекомбинации может лишь реликтовое излучение. Поскольку до рекомбинации излучение было жёстко связано с веществом (электроны рассеивали фотоны), то неоднородности в пространственном распределении вещества приводили к пеоднородностям плотности энергии излучения, т. е. к различию темп-ры излучения в разных по плотности областях Вселенной. Когда после рекомбинации вещество перестало взаимодействовать с излучением и стало для него прозрачным, M. ф. и. должно было сохранить всю информацию о неоднородностях плотности во Вселенной в период рекомбинации. Если неоднородности существовали, то темп-pa M. ф. и. должна флуктуировать, зависеть от направления наблюдения. Однако эксперименты по обнаружению ожидаемых флуктуации пока не дали измеримых значений. Они позволяют показать лишь верх, пределы значений флуктуации. В малых угл. масштабах (от одной угл. минуты до шести градусов дуги) флуктуации не превышают 10-4 К. Поиски флуктуации M. ф. и. осложняются также тем, что вклад во флуктуации фона дают дискретные космич. радиоисточники, флуктуирует излучение атмосферы Земли и т. д. Эксперименты в больших у гл. масштабах также показали, что темп-ра M. ф. и. практически не зависит от направления наблюдения: отклонения не превышают 4*10-3 К. Полученные данные позволили снизить оценку степени анизотропии расширения Вселенной в 100 раз по сравнению с оценкой по данным прямых наблюдений "разбегающихся" галактик.

M. ф. и. как "новый эфир". M. ф. и. изотропно лишь в системе координат, связанной с "разбегающимися" галактиками, в т. н. сопутствующей системе отсчёта (эта система расширяется вместе с Вселенной). В любой др. системе координат интенсивность излучения зависит от направления. Этот факт открывает возможность измерения скорости движения Солнца относительно системы координат, связанной с M. ф. и. Действительно, в силу Доплера аффекта фотоны, распространяющиеся навстречу движущемуся наблюдателю, имеют более высокую энергию, нежели догоняющие его, несмотря на то, что в системе, связанной с M. ф. и., их энергии равны. Поэтому и темп-pa излучения для такого наблюдателя оказывается зависящей от направления: 3026-88.jpg где3026-89.jpg- средняя по небу темп-pa излучения, 3026-90.jpg- скорость наблюдателя,3026-91.jpg- угол между вектором скорости и направлением наблюдения.


3026-92.jpg


Рис. 2. Распределение яркости микроволнового фонового излучения на небесной сфере. Цифры характеризуют отклонения от средней по всей сфере температуры микроволнового фона в мК.



Анизотропия реликтового излучения, связанная с движением Солнечной системы относительно поля этого излучения, к настоящему времени твёрдо установлена (рис. 2), она имеет дипольный характер; в направлении на созвездие Льва темп-pa M. ф. и. на 3,5*10-3 К превышает среднюю, а в противоположном направлении (созвездие Водолея) на столько же ниже средней. Следовательно, Солнце (вместе с Землёй) движется относительно M. ф. и. со скоростью ок. 400 км/с по направлению к созвездию Льва. Точность наблюдений столь высока, что экспериментаторы фиксируют скорость движения Земли вокруг Солнца, составляющую 30 км/с. Учёт скорости движения Солнца вокруг центра Галактики позволяет определить скорость движения Галактики относительно M. ф. и. Она составляет3026-93.jpg км/с. В принципе, существует метод, позволяющий определить скорости богатых скоплений галактик относительно реликтового излучения (см. Скопления галактик).

Спектр M. ф. и. На рис. 1 приведены существующие эксперим. данные о M. ф. и. и планковская кривая распределения энергии в спектре равновесного излучения абсолютно чёрного тела с темп-рой 3026-94.jpg Эксперим. точки хорошо согласуются с теоретич. кривой, что служит веским подтверждением модели горячей Вселенной.

Отметим, что в диапазоне сантиметровых и дециметровых волн измерения темп-ры M. ф. и. возможны с поверхности Земли. В миллиметровом и особенно в субмиллиметровом диапазонах излучение атмосферы препятствует наблюдениям M. ф. и., поэтому измерения проводятся широкополосными болометрами, установленными на воздушных шарах (баллонах) и ракетах. Ценные данные о спектре M. ф. и. в миллиметровой области получены из наблюдений линий поглощения молекул межзвёздной среды в спектрах горячих звёзд. Выяснилось, что осн. вклад в плотность энергии M. ф. и. даёт излучение с длиной волны3026-95.jpgот 6 до 0,6 мм, темп-pa к-рого близка к 3 К. В этом диапазоне длин волн плотность энергии M. ф. и.3026-96.jpgэВ/см3.

Один из экспериментов по определению флуктуации M. ф. и., его дипольной компоненты и верх, границы квадрупольного излучения был осуществлён на ИСЗ "Прогноз-9" (СССР, 1983). Угл. разрешение аппаратуры составляло ок. 3026-97.jpg Зарегистрированный тепловой контраст не превышал 3026-98.jpgК.

Многие из космологич. теорий и теорий образования галактик, к-рые рассматривают процессы аннигиляции. вещества и антивещества, диссипацию развитой турбулентности, крупномасштабных потенциальных движений, испарение первичных чёрных дыр малой массы, распад нестабильных элементарных частиц, предсказывают значит, энерговыделение на ранних стадиях расширения Вселенной. В то же время любое выделение энергии 3026-99.jpg на этапе, когда темп-ра M. ф. и. менялась от 3·108 К до 3 К, должно было заметно исказить его чернотельный спектр. T. о., спектр M. ф. и. несёт информацию о тепловой истории Вселенной. Более того, эта информация оказывается дифференцированной: выделение энергии на каждом из трёх этапов расширения3026-100.jpg

3026-101.jpg вызывает специфич. искажение спектра. На первом этапе сильнее всего искажается спектр в ДВ-области, на втором и третьем - в коротковолновой. Свой вклад в искажение спектра в КВ-области вносит уже сам процесс рекомбинации. Фотоны, испускаемые при рекомбинации, обладают энергией ок. 10 эВ, что в десятки раз превышает ср. энергию фотонов равновесного излучения той эпохи (при 3026-102.jpg К). Таких энергичных фотонов крайне мало (3026-103.jpgот общего их числа). Поэтому рекомбинационное излучение, возникающее при образовании нейтральных атомов, должно было сильно исказить спектр M. ф. и. на волнах3026-104.jpg

Ещё один нагрев вещество Вселенной могло испытать при образовании галактик. Спектр M. ф.и. при этом также мог измениться, поскольку рассеяние реликтовых фотонов на горячих электронах увеличивает энергию фотонов (см. Комптона эффект ).Особенно сильные изменения происходят в этом случае в КВ-области спектра. Одна из кривых, демонстрирующих возможное искажение спектра M. ф. и., приведена на рис. 1 (шриховая кривая). Имеющиеся изменения в спектре M. ф. и. показали, что вторичный разогрев вещества во Вселенной произошёл много позже рекомбинации.

фотона возрастает во много раз, и радиофотон превращается в фотон рентг. излучения, энергия же электрона меняется незначительно. Поскольку этот процесс повторяется многократно, электрон постепенно теряет всю энергию. Наблюдаемое со спутников и ракет рентг. фоновое излучение, по-видимому, частично обязано своим происхождением этому процессу.

Протоны и ядра сверхвысоких энергий также подвержены воздействию фотонов M. ф. и.: при столкновениях с ними ядра расщепляются, а соударения с протонами приводят к рождению новых частиц (электроп-позитронных пар, пионов и т. д.). В результате энергия протонов быстро уменьшается до пороговой, ниже к-рой рождение частиц становится невозможным но законам сохранения энергии и импульса. Именно с этими процессами связывают практич. отсутствие в космич. лучах частиц с энергией3027-1.jpg а также малое кол-во тяжёлых ядер.

Лит.: Зельдович Я. Б., "Горячая модель" Вселенной, "УФН", 1966, т. 89, с. 647; Вайнберг С., Первые три минуты, пер. с англ., M., 1981. P. А. Сюняев.

  Предметный указатель