Стартовая Предметный указатель Новости науки и техники
Новости науки и техники
Взгляд в 2020 год. Астрономия
Будущие открытия в астрономии.
Корреспонденты журнала Nature опросили ученых из разных областей науки.
Ключевые вопросы на ближайшее десятилетие включают определение природы темной материи, которая наполняет Вселенную - это будет основным разочарованием, если парадигма темной материи не будет подтверждена прямым детектированием слабо взаимодействующих частиц, так как пройдет уже 40 лет с момента ее создания. Далее...

Вселенная, темная материя

аберрации оптических систем

Определение

АБЕРРАЦИИ ОПТИЧЕСКИХ СИСТЕМ (от лат. aberratio - уклонение, удаление) - искажения изображений, даваемых реальными оптическими системами, заключающиеся в том, что оптические изображения неточно соответствуют предмету, оказываются размыты (монохроматическая геометрическая аберрация оптической системы) или окрашены (хроматическая аберрация оптической системы). В большинстве случаев аберрации обоих типов проявляются одновременно.

В приосевой, так называемой параксиальной, области (см. Параксиальный пучок лучей) оптическая система близка к идеальной, т. е. точка изображается точкой, прямая линия - прямой и плоскость - плоскостью. Но при конечной ширине пучков и конечном удалении точки-источника от оптической оси нарушаются правила параксиальной оптики: лучи, испускаемые точкой предмета, пересекаются не в одной точке плоскости изображений, а образуют кружок рассеяния, т. е. изображение искажается - возникают аберрации.

Геометрические аберрации

Геометрические аберрации оптических систем характеризуют несовершенство оптических систем в монохроматичном свете. Происхождение аберраций оптических систем можно понять, рассмотрев прохождение лучей через центрированную оптическую систему L (рис. 1). - плоскость предмета, - плоскость изображений, и - соответственно плоскости входного и выходного зрачков.

Оптическая система. Абберация кома 111991-58.jpg

В идеальной оптической системе все лучи, испускаемые какой-либо точкой предмета, находящейся в меридиональной плоскости на расстоянии от оси, пройдя через систему, собрались бы снова в одну точку . В реальной оптической системе эти лучи пересекают плоскость изображения в разных точках. При этом координаты точки В пересечения луча с плоскостью изображения зависят от направления луча и определяются координатами точки А пересечения с плоскостью входного зрачка. Отрезок характеризует несовершенство изображения, даваемого данной оптической системой. Проекции этого отрезка на оси координат равны и и характеризуют поперечную аберрацию. В заданной оптической системе и являются функциями координат падающего луча : и . Считая координаты малыми, можно разложить эти функции в ряды по , и .

Линейные члены этих разложений соответствуют параксиальной оптике, следовательно коэффициенты при них должны быть равными нулю; чётные степени не войдут в разложение ввиду симметричности оптической системы; таким образом остаются нечётные степени, начиная с третьей; аберрации 5-го порядка (и выше) обычно не рассматривают, поэтому первичные аберрации оптической системы называют аберрациями 3-го порядка. После упрощений получаются следующие формулы.

Система уравнений описывающая абберацию (*)

Коэффициенты зависят от характеристик оптической системы (радиусов кривизны, расстояний между оптическими поверхностями, показателей преломления). Обычно классификацию аберраций оптических систем проводят, рассматривая каждое слагаемое в отдельности, полагая другие коэффициенты равными нулю. При этом для наглядности представления об аберрации рассматривают семейство лучей, исходящих из точки-объекта и пересекающих плоскость входного зрачка по окружности радиуса р с центром на оси. Ей соответствует определённая кривая в плоскости изображений, а семейству концентрических окружностей в плоскости входного зрачка радиусов и так далее соответствует семейство кривых в плоскости изображений. По расположению этих кривых можно судить о распределении освещённости в пятне рассеяния, вызываемом аберрацией.

Сферическая аберрация соответствует случаю, когда , а все другие коэффициенты равны нулю. Из выражения (*) следует, что эта аберрация не зависит от положения точки С в плоскости объекта, а зависит только от координаты точки А в плоскости входного зрачка, а именно, пропорциональна . Распределение освещённости в пятне рассеяния таково, что в центре получается острый максимум при быстром уменьшении освещённости к краю пятна. Сферическая аберрация - единственная геометрическая аберрация, остающаяся и в том случае, если точка-объект находится на главной оптической оси системы.

Кома определяется выражениями при коэффициенте В. Равномерно нанесённым на входном зрачке окружностям соответствуют в плоскости изображения семейства окружностей (рис. 2) с радиусами, увеличивающимися как , центры к-рых удаляются от параксиального изображения также пропорционально Огибающей этих окружностей (каустикой) являются две прямые, составляющие угол 60°. Изображение точки при наличии комы имеет вид несимметричного пятна, освещённость которого максимальна у вершины фигуры рассеяния и вблизи каустики. Кома отсутствует на оси центрированных оптических систем.

Астигматизм и кривизна поля соответствуют случаю, когда не равны нулю коэффициенты С и D. Из выражения (*) следует, что эти аберрации пропорциональны квадрату удаления точки-объекта от оси и первой степени радиуса отверстия. Астигматизм обусловлен неодинаковой кривизной оптической поверхности в разных плоскостях сечения и проявляется в том, что волновой фронт деформируется при прохождении оптической системы, и фокус светового пучка в разных сечениях оказывается в разных точках. Фигура рассеяния представляет собой семейство эллипсов с равномерным распределением освещённости. Существуют две плоскости - меридиональная и перпендикулярная ей сагиттальная, в которых эллипсы превращаются в прямые отрезки. Центры кривизны в обоих сечениях называются фокусами, а расстояние между ними является мерой астигматизма.

астигматизм

Пучок параллельных лучей, падающих на оптическую систему под углом (рис. 3), в меридиональном сечении имеет фокус в точке m, а в сагиттальном - в точке s. С изменением угла положения фокусов m и s меняются, причём геометрические места этих точек представляют собой поверхность вращения MOM и SOS вокруг главной оси системы. На поверхности КОК, находящейся на равных расстояниях от MOM и SOS , искажение наименьшее, поэтому поверхность КОК называется поверхностью наилучшей фокусировки. Отклонение этой поверхности от плоскости представляет собой аберрацию, называемую кривизной поля. В оптической системе может отсутствовать астигматизм (например, если MOM и SOS совпадают), но кривизна поля остаётся: изображение будет резким на поверхности КОК, а в фокальной плоскости FF изображение точки будет иметь вид кружка.

Дисторсия проявляется в случае, если ; как видно из формул (*), она может быть в меридиональной плоскости: . Дисторсия не зависит от координат точки пересечения луча с плоскостью входного зрачка (поэтому каждая точка изображается точкой), но зависит от расстояния точки до оптической оси , поэтому изображение искажается, нарушается закон подобия. Например, изображение квадрата имеет вид подушкообразной и бочкообразной фигур (рис. 4) соответственно в случае Е>0 и Е<0.

Труднее всего устранить сферическую аберрацию и кому. Уменьшая диафрагму, можно было бы практически полностью устранить обе эти аберрации, однако уменьшение диафрагмы уменьшает яркость изображения и увеличивает дифракционные ошибки.

Абберация дисторсия

Подбором линз устраняют дисторсию, астигматизм и кривизну поля изображения.

Хроматические аберрации

Хроматические аберрации. Излучение обычных источников света обладает сложным спектральным составом, что приводит к возникновению хроматических аберраций. В отличие от геометрических, хроматические аберрации возникают и в параксиальной области. Дисперсия света порождает два вида хроматических аберраций: хроматизм положения фокусов и хроматизм увеличения. Первая характеризуется смещением плоскости изображения для разных длин волн, вторая - изменением поперечного увеличения. Подробнее см. Хроматическая аберрация.

Литература

Слюсарев Г. Г., Методы расчета оптических систем, 2 изд., Л., 1969;
Сивухин Д. В., Общий курс физики, [т. 4] - Оптика, 2 изд., М., 1985;
Теория оптических систем, 2 изд., М., 1981.

Г. Г. Слюсарев.

  Предметный указатель